
A Fixed-point 3D Graphics Library with Energy-efficient
Cache Architecture for Mobile Multimedia Systems

Min-wuk Lee, Byeong-Gyu Nam, Ju-Ho Sohn, Namjun Cho, Hyejung Kim, Kwanho Kim and Hoi-Jun Yoo
Department of Electrical Engineering and Computer Science

Korea Advanced Institute of Science and Technology (KAIST)
Daejeon, Republic of Korea
leemw@eeinfo.kaist.ac.kr

Abstract— A 3D computer graphics (3DCG) library with
energy-efficient cache architecture is implemented for mobile
multimedia systems. The developed library is based on fixed-
point arithmetic for low energy consumption. To achieve high
performance, the library is optimized at both of the assembly
and the algorithm levels on 3 different Advanced RISC
Machines (ARM) processors. In order to enhance energy-
efficiency as well as performance furthermore, a series of
simulations have been performed on application programs
with various cache configurations. We find that 2-way set
associative cache consumes low energy with negligible
performance degradation. In this cache system, optimized
library can achieve 66.1% performance improvement and
25.3% energy saving in average compared with the
conventional 4-way set associative cache system. Software and
hardware co-optimization achieves 67K polygons/sec with low
energy consumption. We verified the graphics library with
proposed cache architecture by implementing a mobile
graphics LSI.

I. INTRODUCTION

As the mobile electronics market increases rapidly, 3G
multimedia terminals are getting more popular. The
applications are already extended to the real-time multimedia
such as MP3 audio, MPEG-4 video and even to 3D computer
graphics (3DCG) [1]. For mobile systems, low energy
consumption is the most important issue because of their
limited battery capacities [2]. In spite of these requirements,
3DCG operations demand extensively high computing power
and broad memory bandwidth even in PC platform.

To design and analyze 3DCG solution for mobile
systems, we developed an OpenGL-ES [3] compatible 3D
graphics library, MobileGL. MobileGL is based on fixed-
point arithmetic, being optimized to the integer datapath of
embedded processors. In the previous work [4], however, the
3DCG library was focused on floating-point arithmetic and
simulation platform consisted of CPU and external memory
only, without caches.

MobileGL is optimized for fast execution time at both of
the assembly and the algorithm levels. Simulation is based
on 3 different Advanced RISC Machines (ARM) processors

(ARM7, ARM9 and StrongARM), assuming each host
processor has the conventional 4-way set associative cache
[2]. In cached processors, software optimization results in
66.1% performance improvement in average.

Because energy is the product of power and time, low
power architecture as well as fast execution time is necessary.
We further optimize the cache architecture of ARM
processors for energy-efficiency because caches are the most
power consuming part in embedded system [5]. Using
MobileGL, the energy and the performance of several cache
architectures are compared. And we present 2-way set
associative cache as an energy optimal architecture with
negligible performance degradation compared with the
conventional 4-way set associative cache system.

Software and hardware co-optimization achieved 67K
polygons/sec with low energy consumption. We verified the
graphics library with proposed cache architecture by
implementing a mobile graphics LSI.

II. SIMULATION ENVIRONMENT

Simulation environment consists of target hardware
platform, 3DCG library and application programs as shown
in Fig. 1.

A. Target hardware platform

The simulated target hardware platform contains ARM
processor and cache system. Specifically, ARM7, ARM9
and StrongARM are used for ARM processor. Program
execution time is represented by following equations.

latencyMemoryTT CPUexetotalexe ___ (1)

countshitcache

K

countsninstructio

K

ninstructioexeCPUexe cycleCPUTT
__

1

_

1

__ _ (2)

where, Texe is execution time.

With cycle-accurate simulator in ARM software
development toolkit [6], we obtained the CPU execution
time (2) and memory transaction. Analyzing the memory
transaction, the memory latency can be measured with

46020-7803-8834-8/05/$20.00 ©2005 IEEE.

ARM
Processor

SOFTWARE
OPTIMIZATION

Memory
COFIGURABLE
CACHE MODEL

Memory transaction file

CPU execution time

Memory
latency

3D Graphics Library

TOTAL
EXECUTION

TIME

Target Hardware Platform

Application
Programs

Figure 1. Simulation environment

changing cache configurations. The total execution time (1)
is the addition of CPU execution time and memory latency.

B. 3DCG library

The 3DCG library of Fig. 2, MobileGL, is based on
OpenGL-ES specification [3]. The library is optimized with
the fixed-point arithmetic for non-FPU embedded processors.
The graphics pipeline is separated into two parts; 1) LT/LO
for lighting and texturing (LT) or lighting only application
(LO) and 2) TO for texture-only application. Because
texture-only application is widely used, TO part is optimized
for reducing unnecessary branch instructions. In geometry
stage of TO part, transformation and projection operations
can be unified to reduce the matrix-vertex multiplications
because lighting process is absent. Disabling perspective
correction of texture address is implemented as an extended
option which is not specified in OpenGL-ES. After the
triangle setup and interpolation, z-comparison for depth test
is performed in advance to prevent unnecessary shading and
texturing [7]. The implemented library supports QVGA
screen size.

C. Application programs

We developed the gaming applications using MobileGL
for scene tests. Fig. 3 shows two test images captured from
animated image sequences and their benchmarks. Fig. 3(a)
was used for texture-only or both texturing and lighting and
Fig. 3(b) for lighting only application.

III. SOFTWARE OPTIMIZATION

Fig. 4 shows the performance improvement through the
software optimization on three cached ARM processors
(ARM7, ARM9 and StrongARM). First, we develop the
MobileGL with ANCI C standard (Step A and Step E in
geometry and rendering stage, respectively), then, we further
optimize the library step by step.

A. Software optimization in geometry stage

Fig. 4(a) shows the performance improvement in
geometry stage with three ARM processors.

Data input / x,y,z,w,
nx,ny,nz,u,v

Clippling L
x,y,z Division by w

Mapping vertex

View transformation
ApplyLight

Perspective/
Orthographic projection

View X Projection

Cull face

u,v Division by w

Clippling NL
x,y,z Division by w

Mapping vertex

Cull face

u,v Division by w

Triangle setup
Edge slope calculation L

Delta/pixel calculation L
Horizontal setup L

Depth test

Pixel Rendering
Shading, a-Blending
FB, ZB, TM access

X span end ?

Y span end ?

Triangle setup
Edge slope calculation NL

Delta/pixel calculation NL
Horizontal setup NL

Depth test

Pixel Rendering
FB, ZB, TM access

X span end ?

Y span end ?

Tex_perspective_en

Geometry

Rendering

Yes
No

Yes

Yes
No

No

Yes

Yes

Yes

No

No

No

Light enable?
Yes No

Clear buffer

LT/LO TO

Figure 2. 3DCG library block diagram for mobile multimedia systems

Screen
resolution

(Pixels)

Number
of polygons

Average
pixels

per polygon
Scene

Car

Tiger

176 X 208

176 X 208

1004

988 8

12

Texture
storage

32KB

-

 (a) (b) (c)

Figure 3. : (a) Tiger scene. (b) Car scene. (c) Test scene benchmarks

Step B: In step B, assembly optimization is performed.
Especially, the arithmetic function, division and
multiplication are optimized. Because the library adopts the
fixed-point arithmetic, geometry stage data are represented
by the format Qm.n, where m and n indicate integer
precision and decimal fraction, respectively. To insure
decimal fraction, n is greater than or equals to m. However, a
multiplication may cause an overflow. We implemented
special multiply function (SMF) to extend the result to 64-bit
in order to avoid overflows. Step B includes the assembly
optimization of SMF. Multiple register transfer addressing
mode is applied to implement SMF easily and briefly.
Division optimization of reducing instruction counts
improves performance in lighting stage.

Step C: Step C explains the performance improvement
when using ARM’s MUL or MLA instruction instead of
using SMF in matrix calculation. We can eliminate the
function call for SMF with the cost of one more shift by
minimizing the coordinate values.

4603

LT/LO TO

ARM7 at 80 MHz ARM9 at 200 MHz StrongARM at 200 MHz

Transformation Projection Lighting Projection X View

A : Original C code B : Assembly optimization C : Reduction of function call
E

xe
cu

ti
o

n
 t

im
e(

m
s)

p
er

 1
00

0
P

o
ly

g
o

n
s

A B C A B C A B CA B C A B C A B C

14

12

10

8

6

4

2

0

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

12

10

8

6

4

2

0

1.0

0.8

0.6

0.4

0.2

0

10

8

6

4

2

0

1.0

0.8

0.6

0.4

0.2

0

31 %
reduction 58 %

reduction
34 %

reduction
72 %

reduction

35 %
reduction

72 %
reduction

LT/LO TO LT/LO TO

(a) Performance improvement in geometry stage

TOLOLT

ARM7 at 80 MHz ARM9 at 200 MHz StrongARM at 200 MHz

Shading TexturingTotal time when using LUT in division Triangle setup & Edge calculation Horizontal setup Shading, Texturing

D : Division by LUT E : Original C code F : Reduction of division

D E F G D E F GD E F D E F G D E F GD E F D E F G D E F GD E F

100

80

60

40

20

0 00

60

50

40

30

20

10

0

80

70

60

50

40

30

20

10

0

100

80

60

40

20

0

160

140

120

100

80

60

40

20

0

40

35

30

25

15

10

5

50

40

30

20

10

20

40

35

30

25

15

10

5

50

40

30

20

10

00

20

45

50 %
reduction

3 %
reduction

51 %
reduction

49 %
reduction

15 %
reduction 43 %

reduction
49 %

reduction

15 %
reduction

48 %
reduction

G : Disabling perspective correction of the texture address

TOLOLT TOLOLT

E
xe

cu
ti

o
n

 t
im

e(
m

s)
p

er
 1

00
0

P
o

ly
g

o
n

s

(b) Performance improvement in rendering stage

Figure 4. Performance improvement through software optimization

B. Software optimization in rendering stage

Fig. 4(b) shows the performance improvement in
rendering stage with three ARM processors.

Step D: In rendering stage, most of divisions are
reciprocal and their denominators are smaller than 320. In
previous work [8], this divider is implemented with look-up
table (LUT) in hardware because of its small denominator
range, but it is disadvantageous in software implementation
with cached processor due to frequent cache misses.

Step F: Because the 3DCG in mobile system requires
only a limited screen resolution under QVGA, most edge
spans are 1,2,4 or 8 pixel distance. In this case, we used shift
operation rather than division because denominators are the
power of 2. In texture application, it gives 31% execution
time reduction as shown in step F.

Step G: The step G is about disabling perspective
correction of the texture address. It also gives performance
improvement without critical image quality loss.

By optimizing the software through several steps
described above, we achieve 87% performance improvement
at both lighting and texturing application, 19.6% at lighting
only, and 91.6% at texture-only application in average. It
reduces energy consumption because of fast execution time.

 Until now, we have focused on reducing energy
consumption by optimizing the software library only. From
now, we will explain the hardware effort trying to further

reduce the energy consumption by proposing the cache
architecture.

IV. PROPOSED CACHE ARCHITECTURE

For low energy consumption, low power scheme as well
as fast execution is necessary. We optimize the cache
architecture for energy-efficiency because cache is
responsible for up to 50% of overall on-chip energy
consumption in embedded system [5]. In order to select the
cache configuration for energy saving, a series of simulations
were performed on application programs with changing the
cache configurations. The configurable parameters in cache
are its total size, line size and set associativity. We focused
on the factors of; 1) execution time of application programs,
2) power consumption of cache and 3) energy consumption.
Power consumption information was extracted from CACTI
3.1 model [9] and we made the power index with changing
cache configurations as shown in Table. 1, which shows
consumed power of each configuration in cache hit. In cache
miss, the power consumption is from 50 to 200 times bigger
than in cache hit [2].

The comparison of normalized energy and execution
time is performed on various cache configurations as shown
in Fig. 5. We choose a base cache of 8Kbytes having 4-way

TABLE I. POWER INDEX ON VARIOUS CACHE CONFIGURATIONS

8 4 2 1
1.62 1.00 0.57 0.38

16B
4 2 1

1.01 0.56 0.38

32B
Way

Line size

Cache power

8KBCache size

4604

set associativity and a line size of 16bytes. Fig. 5(a) is
related with the unified cache architecture, e.g. that of ARM7
and Fig. 5(b) is about the Harvard cache architecture, e.g.
that of ARM9 and StrongARM. Direct mapped cache shows
poor hit ratio and hence suffers from poor performance and
energy consumption, especially in the unified cache
architecture. Although adding associativity increases hit ratio
of a cache, the 8-way set associative cache consumes large
energy because of the additional power. 2-way set
associative cache shows the best energy-efficiency and
maximum 5% performance degradation compared with the
conventional 4-way set associative cache architecture. Using
2-way set associative cache, we can obtain 25.3% energy
saving in average compared with the conventional 4-way set
associative cache without critical performance loss.

V. IMPLEMENTATION RESULTS

With software optimization and proposed cache system,
3DCG library achieves 67K polygons/sec, consuming low
energy as shown in Fig. 6. The performance is 6.7 times
better than that of previous work [10]. The proposed 2- way
set associative cache architecture was integrated on a mobile
graphics LSI successfully [7], as shown in Fig. 7.

VI. CONCLUSION

The fixed-point 3DCG library was developed for mobile
multimedia systems. Software optimization at both of the

Normalized energy Normalized execution time

LT LO TO

$1 : 8-way, line size of 16B, cache size of 8KB

$2 : 4-way, line size of 16B, cache size of 8KB

$3 : 2-way, line size of 16B, cache size of 8KB

$4 : direct, line size of 16B, cache size of 8KB

$5 : 4-way, line size of 32B, cache size of 8KB

$6 : 2-way, line size of 32B, cache size of 8KB

$7 : direct, line size of 32B, cache size of 8KB

N
o

rm
al

iz
ed

 e
n

er
g

y

N
o

rm
alized

 execu
tio

n
 tim

e

$1 $2 $3 $4 $5 $6 $7

0.6

0.8

1

1.2

1.4

1.6

0.5

1

1.5

2

2.5

3

$1 $2 $3 $4 $5 $6 $7

0.6

0.8

1

1.2

1.4

1.6

0.5

1

1.5

2

2.5

3

$1 $2 $3 $4 $5 $6 $7

0.6

0.8

1

1.2

1.4

1.6

0.5

1

1.5

2

2.5

3

(a)

LT LO TO

N
o

rm
al

iz
ed

 e
n

er
g

y

N
o

rm
alized

 execu
tio

n
 tim

e

0.6

0.8

1

1.2

1.4

1.6

0.7

0.8

0.9

1

1.1

1.2

$1 $2 $3 $4 $5 $6 $7
0.6

0.8

1

1.2

1.4

1.6

0.7

0.8

0.9

1

1.1

1.2

$1 $2 $3 $4 $5 $6 $7
0.6

0.8

1

1.2

1.4

1.6

0.7

0.8

0.9

1

1.1

1.2

$1 $2 $3 $4 $5 $6 $7

(b)

Figure 5. Energy and excution time comparison on the various cache
configurations (a) in the unified cache architecture. (b) in the Harvard

cache architecture

ARM7
@ 80MHz

TOLT LO
0

20

40

60

P
o

ly
o

n
s

/ m
ill

i s
ec

TOLT LO TOLT LO

Original C code
Co-optimization

ARM9
@ 200MHz

StrongARM
@ 200MHz

Previous
work [10]

67K Polygons/sec

6.7 times
Performance
improvement

Figure 6. Library performance

ARM9
2-way
Cache

Figure 7. Microphotograph of a mobile graphics LSI chip

assembly and the algorithm levels were performed, resulting
in 66.1% performance improvement in average.
Furthermore, we simulated the performance and energy
consumption with various cache configurations for
improving energy-efficiency. We found that 2-way set
associative cache obtained 25.3% energy saving compared
with conventional 4-way set associative one. The library
achieved 67K polygons/sec without any hardware
accelerators. The graphics library with energy-efficient
cache architecture was implemented in a mobile graphics
LSI successfully.

REFERENCES

[1] Khronos Group, “Bringing 3-D gaming to cell phones,” presented at
the Game Developers Conf. 2003.

[2] C. Zhang, F. Vahid and W. Najjar, “A highly configurable cache
architecture for embedded system,” In Proceedings of the 30th

ACM/IEEE International Symposium on Computer Architecture, San
Diego, CA. 136-146.

[3] OpenGL-ES 1.0 Reference Manual Version 1.0

[4] Ju-ho Sohn, Ramchan Woo and Hoi-Jun Yoo, “Optimization of
Portable System Architecture for Real-Time 3D Graphics,” ISCAS
2002, Volume: 1 , 26-29 May 2002.

[5] J. Montenaro et al., “160-MHz 32-b 0.5-W CMOS RISC
Microprocessor,” In Proceedings of International Solid State Circuits
Conference, 1996.

[6] ARM Software Development Tookit version 2.50 User Guide,
Advanced RISC Machines, Nov, 1998.

[7] Ramchan Woo et al., “A 210mW graphics LSI implementing full 3D
pipeline with 264Mtexels/s texturing for mobile multimedia
applications,” IEEE International Solid-State Circuits Conference,
2003.

[8] Ramchan Woo et al., “ A low power 3D rendering engine with two
texture units and 29Mb embedded DRAM for 3G multimdedia
terminals,” European Solid-State Circuits, 2003, Conference on, 16-
18 Sept.2003, Pages : 53-56.

[9] CACTI 3.1 :An integrated cache timing, power, and area model

[10] K.Yoshida, T.Sakamoto, T.Hase, “ A 3D graphics library for 32-bit
microprocessors for embedded systems,”, Consumer Electronics,
IEEE Transactions on, Volume:44, Issue:3, Aug. 1998.

4605

