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Abstract— A 3D computer graphics (3DCG) library with 
energy-efficient cache architecture is implemented for mobile 
multimedia systems. The developed library is based on fixed-
point arithmetic for low energy consumption. To achieve high 
performance, the library is optimized at both of the assembly 
and the algorithm levels on 3 different Advanced RISC 
Machines (ARM) processors. In order to enhance energy-
efficiency as well as performance furthermore, a series of 
simulations have been performed on application programs 
with various cache configurations. We find that 2-way set 
associative cache consumes low energy with negligible 
performance degradation. In this cache system, optimized 
library can achieve 66.1% performance improvement and 
25.3% energy saving in average compared with the 
conventional 4-way set associative cache system. Software and 
hardware co-optimization achieves 67K polygons/sec with low 
energy consumption. We verified the graphics library with 
proposed cache architecture by implementing a mobile 
graphics LSI.  

I. INTRODUCTION

As the mobile electronics market increases rapidly, 3G 
multimedia terminals are getting more popular. The 
applications are already extended to the real-time multimedia 
such as MP3 audio, MPEG-4 video and even to 3D computer 
graphics (3DCG) [1]. For mobile systems, low energy 
consumption is the most important issue because of their 
limited battery capacities [2]. In spite of these requirements, 
3DCG operations demand extensively high computing power 
and broad memory bandwidth even in PC platform. 

To design and analyze 3DCG solution for mobile 
systems, we developed an OpenGL-ES [3] compatible 3D 
graphics library, MobileGL. MobileGL is based on fixed-
point arithmetic, being optimized to the integer datapath of 
embedded processors. In the previous work [4], however, the 
3DCG library was focused on floating-point arithmetic and 
simulation platform consisted of CPU and external memory 
only, without caches. 

MobileGL is optimized for fast execution time at both of 
the assembly and the algorithm levels. Simulation is based 
on 3 different Advanced RISC Machines (ARM) processors 

(ARM7, ARM9 and StrongARM), assuming each host 
processor has the conventional 4-way set associative cache 
[2]. In cached processors, software optimization results in 
66.1% performance improvement in average. 

Because energy is the product of power and time, low 
power architecture as well as fast execution time is necessary. 
We further optimize the cache architecture of ARM 
processors for energy-efficiency because caches are the most 
power consuming part in embedded system [5]. Using 
MobileGL, the energy and the performance of several cache 
architectures are compared. And we present 2-way set 
associative cache as an energy optimal architecture with 
negligible performance degradation compared with the 
conventional 4-way set associative cache system. 

Software and hardware co-optimization achieved 67K 
polygons/sec with low energy consumption. We verified the 
graphics library with proposed cache architecture by 
implementing a mobile graphics LSI. 

II. SIMULATION ENVIRONMENT

Simulation environment consists of target hardware 
platform, 3DCG library and application programs as shown 
in Fig. 1.  

A. Target hardware platform 

The simulated target hardware platform contains ARM 
processor and cache system. Specifically, ARM7, ARM9 
and StrongARM are used for ARM processor. Program 
execution time is represented by following equations. 
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where, Texe is execution time.

With cycle-accurate simulator in ARM software 
development toolkit [6], we obtained the CPU execution 
time (2) and memory transaction. Analyzing the memory 
transaction, the memory latency can be measured with  
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Figure 1. Simulation environment 

changing cache configurations. The total execution time (1) 
is the addition of CPU execution time and memory latency.  

B. 3DCG library 

The 3DCG library of Fig. 2, MobileGL, is based on 
OpenGL-ES specification [3]. The library is optimized with 
the fixed-point arithmetic for non-FPU embedded processors.  
The graphics pipeline is separated into two parts; 1) LT/LO 
for lighting and texturing (LT) or lighting only application 
(LO) and 2) TO for texture-only application.  Because 
texture-only application is widely used, TO part is optimized 
for reducing unnecessary branch instructions. In geometry 
stage of TO part, transformation and projection operations 
can be unified to reduce the matrix-vertex multiplications 
because lighting process is absent. Disabling perspective 
correction of texture address is implemented as an extended 
option which is not specified in OpenGL-ES. After the 
triangle setup and interpolation, z-comparison for depth test 
is performed in advance to prevent unnecessary shading and 
texturing [7]. The implemented library supports QVGA 
screen size.  

C. Application programs 

We developed the gaming applications using MobileGL 
for scene tests. Fig. 3 shows two test images captured from 
animated image sequences and their benchmarks. Fig. 3(a) 
was used for texture-only or both texturing and lighting and 
Fig. 3(b) for lighting only application. 

III. SOFTWARE OPTIMIZATION

Fig. 4 shows the performance improvement through the 
software optimization on three cached ARM processors 
(ARM7, ARM9 and StrongARM). First, we develop the 
MobileGL with ANCI C standard (Step A and Step E in 
geometry and rendering stage, respectively), then, we further 
optimize the library step by step. 

A. Software optimization in geometry stage 

Fig. 4(a) shows the performance improvement in 
geometry stage with three ARM processors.  
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Figure 2. 3DCG library block diagram for mobile multimedia systems 
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Figure 3. : (a) Tiger scene. (b) Car scene. (c) Test scene benchmarks 

Step B: In step B, assembly optimization is performed. 
Especially, the arithmetic function, division and 
multiplication are optimized. Because the library adopts the 
fixed-point arithmetic, geometry stage data are represented 
by the format Qm.n, where m and n indicate integer 
precision and decimal fraction, respectively. To insure 
decimal fraction, n is greater than or equals to m. However, a 
multiplication may cause an overflow. We implemented 
special multiply function (SMF) to extend the result to 64-bit 
in order to avoid overflows. Step B includes the assembly 
optimization of SMF. Multiple register transfer addressing 
mode is applied to implement SMF easily and briefly. 
Division optimization of reducing instruction counts 
improves performance in lighting stage. 

Step C: Step C explains the performance improvement 
when using ARM’s MUL or MLA instruction instead of 
using SMF in matrix calculation. We can eliminate the 
function call for SMF with the cost of one more shift by 
minimizing the coordinate values. 
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Figure 4. Performance improvement through software optimization 

B. Software optimization in rendering stage 

Fig. 4(b) shows the performance improvement in 
rendering stage with three ARM processors.  

Step D: In rendering stage, most of divisions are 
reciprocal and their denominators are smaller than 320. In 
previous work [8], this divider is implemented with look-up 
table (LUT) in hardware because of its small denominator 
range, but it is disadvantageous in software implementation 
with cached processor due to frequent cache misses. 

Step F: Because the 3DCG in mobile system requires 
only a limited screen resolution under QVGA, most edge 
spans are 1,2,4 or 8 pixel distance. In this case, we used shift 
operation rather than division because denominators are the 
power of 2. In texture application, it gives 31% execution 
time reduction as shown in step F.  

Step G: The step G is about disabling perspective 
correction of the texture address. It also gives performance 
improvement without critical image quality loss. 

By optimizing the software through several steps 
described above, we achieve 87% performance improvement 
at both lighting and texturing application, 19.6% at lighting 
only, and 91.6% at texture-only application in average. It 
reduces energy consumption because of fast execution time. 

 Until now, we have focused on reducing energy 
consumption by optimizing the software library only. From 
now, we will explain the hardware effort trying to further 

reduce the energy consumption by proposing the cache 
architecture. 

IV. PROPOSED CACHE ARCHITECTURE

For low energy consumption, low power scheme as well 
as fast execution is necessary. We optimize the cache 
architecture for energy-efficiency because cache is 
responsible for up to 50% of overall on-chip energy 
consumption in embedded system [5]. In order to select the 
cache configuration for energy saving, a series of simulations 
were performed on application programs with changing the 
cache configurations. The configurable parameters in cache 
are its total size, line size and set associativity. We focused 
on the factors of; 1) execution time of application programs, 
2) power consumption of cache and 3) energy consumption. 
Power consumption information was extracted from CACTI 
3.1 model [9] and we made the power index with changing 
cache configurations as shown in Table. 1, which shows 
consumed power of each configuration in cache hit. In cache 
miss, the power consumption is from 50 to 200 times bigger 
than in cache hit [2]. 

The comparison of normalized energy and execution 
time is performed on various cache configurations as shown 
in Fig. 5. We choose a base cache of 8Kbytes having 4-way 

TABLE I. POWER INDEX ON VARIOUS CACHE CONFIGURATIONS

8 4 2 1
1.62 1.00 0.57 0.38

16B
4 2 1

1.01 0.56 0.38

32B
Way

Line size

Cache power

8KBCache size
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set associativity and a line size of 16bytes.  Fig. 5(a) is 
related with the unified cache architecture, e.g. that of ARM7 
and Fig. 5(b) is about the Harvard cache architecture, e.g. 
that of ARM9 and StrongARM. Direct mapped cache shows 
poor hit ratio and hence suffers from poor performance and 
energy consumption, especially in the unified cache 
architecture. Although adding associativity increases hit ratio 
of a cache, the 8-way set associative cache consumes large 
energy because of the additional power. 2-way set 
associative cache shows the best energy-efficiency and 
maximum 5% performance degradation compared with the 
conventional 4-way set associative cache architecture. Using 
2-way set associative cache, we can obtain 25.3% energy 
saving in average compared with the conventional 4-way set 
associative cache without critical performance loss. 

V. IMPLEMENTATION RESULTS

With software optimization and proposed cache system, 
3DCG library achieves 67K polygons/sec, consuming low 
energy as shown in Fig. 6. The performance is 6.7 times 
better than that of previous work [10]. The proposed 2- way 
set associative cache architecture was integrated on a mobile 
graphics LSI successfully [7], as shown in Fig. 7. 

VI. CONCLUSION

The fixed-point 3DCG library was developed for mobile 
multimedia systems. Software optimization at both of the  

Normalized energy Normalized execution time

LT LO TO

$1 : 8-way, line size of 16B, cache size of 8KB

$2 : 4-way, line size of 16B, cache size of 8KB

$3 : 2-way, line size of 16B, cache size of 8KB

$4 : direct, line size of 16B, cache size of 8KB

$5 : 4-way, line size of 32B, cache size of 8KB

$6 : 2-way, line size of 32B, cache size of 8KB

$7 : direct, line size of 32B, cache size of 8KB

N
o

rm
al

iz
ed

 e
n

er
g

y

N
o

rm
alized

 execu
tio

n
 tim

e

$1 $2 $3 $4 $5 $6 $7

0.6

0.8

1

1.2

1.4

1.6

0.5

1

1.5

2

2.5

3

$1 $2 $3 $4 $5 $6 $7

0.6

0.8

1

1.2

1.4

1.6

0.5

1

1.5

2

2.5

3

$1 $2 $3 $4 $5 $6 $7

0.6

0.8

1

1.2

1.4

1.6

0.5

1

1.5

2

2.5

3

(a)  

LT LO TO

N
o

rm
al

iz
ed

 e
n

er
g

y

N
o

rm
alized

 execu
tio

n
 tim

e

0.6

0.8

1

1.2

1.4

1.6

0.7

0.8

0.9

1

1.1

1.2

$1 $2 $3 $4 $5 $6 $7
0.6

0.8

1

1.2

1.4

1.6

0.7

0.8

0.9

1

1.1

1.2

$1 $2 $3 $4 $5 $6 $7
0.6

0.8

1

1.2

1.4

1.6

0.7

0.8

0.9

1

1.1

1.2

$1 $2 $3 $4 $5 $6 $7

(b)

Figure 5. Energy and excution time comparison on the various cache 
configurations (a) in the unified cache architecture. (b) in the Harvard 

cache architecture 
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assembly and the algorithm levels were performed, resulting 
in 66.1% performance improvement in average. 
Furthermore, we simulated the performance and energy 
consumption with various cache configurations for 
improving energy-efficiency. We found that 2-way set 
associative cache obtained 25.3% energy saving compared 
with conventional 4-way set associative one. The library 
achieved 67K polygons/sec without any hardware 
accelerators. The graphics library with energy-efficient 
cache architecture was implemented in a mobile graphics 
LSI successfully. 
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