
A Fixed-point Multimedia Co-processor with 50Mvertices/s
Programmable SIMD Vertex Shader for Mobile Applications

Ju-Ho Sohn(1), Jeong-Ho Woo(1), Ramchan Woo(2) and Hoi-Jun Yoo(1)

(1) Semiconductor System Laboratory, Department of EECS

Korea Advanced Institute of Science and Technology, Daejeon, Korea.
(2) Imaging and Audio Group, Texas Instruments Incorporated, Dallas, Texas, USA

(sohnjuho@eeinfo.kaist.ac.kr)

Abstract:

A fixed-point multimedia co-processor is designed and
integrated into an ARM-10 based mobile graphics
processor for portable 2-D and 3-D multimedia
applications. The user-programmable SIMD vertex
shader with ARM-10 co-processor architecture realizes
advanced 3-D graphics algorithms and various
multimedia functions. Different from conventional ARM
co-processor architecture, the multimedia co-processor
implements dual operations, by which parallel and
streaming multimedia processing is enabled in mobile
applications. For low power consumption, fixed-point
SIMD Datapath is designed with instruction-wise clock
gating. The co-processor takes 10.2mm2 in 0.18µm 6-
metal standard CMOS logic process and achieves
50Mvertices/s graphics performance with 75.4mW
power consumption.

1. Introduction

 As the 3-G handheld devices such as PDAs and smart
cell-phones are getting more popular, more multimedia
functions are required in wireless terminals. And their
applications are already moving to various 2-D
multimedia functions and even to the realtime 3-D
graphics. Recently, several researches on multimedia
architectures have tried to increase the mobile graphics
capabilities in mobile applications. In the previous works,
they did not integrate all required hardware blocks like
the vertex shader [1] and showed lack of processing
parallelism for streaming graphics data [2]. They
provided the fixed functionalities and were revealed to
show low performance. Also, the conventional floating-
point architectures intentionally decreased the
performance by lowering the operating frequency to
meet the limited power budget [3][4].
 Since users watch the 3-D graphics images on a small
screen of mobile devices very close to their eyes, every
pixel in mobile applications should be drawn with higher
quality by advanced graphics algorithms than that in a
PC system [5]. These advanced graphics algorithms
require the programmability such as DirectX and
OpenGL shading language extensions in graphics
hardware. Moreover the programmability can allow the
single hardware to provide various multimedia functions
beyond 3-D graphics such as MPEG-4 video.

In this work, we designed and implemented a fixed-
point multimedia co-processor with programmable
SIMD vertex shader for the ARM-10 based mobile
graphics processor [6]. The fixed-point datapath is used
to reduce the power consumption because only simple
integer arithmetic circuits can be used in complex
multimedia operations. We optimize the circuits and
architecture so that ARM-10 co-processor architecture
with user-programmable vertex shader can realize
advanced 3-D graphics algorithms and various
multimedia functions while satisfying the requirements
of the battery lifetime and the system resources in mobile
devices.

2. System Architecture

 The system architecture of the proposed multimedia co-
processor is shown in Fig. 1. The multimedia co-
processor is a 128-bit 4-way SIMD co-processor of the
ARM-10 processor architecture [7]. It is connected to
ARM-10 main processor through the co-processor
interface and can perform general integer and fixed-point
SIMD arithmetic operations and 3-D graphics functions
such as geometry transformation and lighting calculation.
The co-processor architecture reduces system bus
bandwidth by avoiding complex bus arbitrations. It also
enables easy integration with efficient programmability.

The co-processor consists of two parts – control and
datapath. The control part contains a co-processor
interface unit and an instruction control unit. It generates
the control signals of the datapath elements by decoding

Rendering Engine

Co-
Proc
I/F

Unit
&

Control4-way
SIMD
ALU

opA opB opC
4-way
SIMD

Multiply

opA opB opC

SFU

op

VGR

VIR

SGR32KB
Display
Buffer

AR0 AR1

SW
Z

VOR 0 VOR 1 VOR 2

Vertex Buffer

Store
Reg.

Load
Reg.

128b

128b

128b

128b

128b

128b 128b 32b

32b

32b

simdOpABus

simdOpBBus

simdOpCBus ARM-10

Figure 1: Multimedia Co-processor Architecture

the current instruction. In the datapath part, there are 4-
way SIMD arithmetic and logic unit (ALU) and SIMD
multiplier unit that are responsible for all SIMD
arithmetic operations such as addition and multiplication.
Special function unit (SFU) is responsible for reciprocal
(RCP) and reciprocal square root (RSQ) operations.
Most of operations are performed in 32-bit fixed-point
numbers, and achieve the single cycle throughput.
Display buffer, implemented as 32kB SRAM stores
frequently accessed multimedia data and graphics
constants. To enable streaming multimedia processing,
the co-processor contains multiple register files – input
vertex registers (VIR), output vertex registers (VOR) and
general SIMD registers (VGR). The co-processor also
has internal vertex buffer that can interface with
hardware rendering engine for additional graphics
rendering operations [8].

3. Dual Operations

 Different from conventional ARM co-processor
architecture [9], the proposed multimedia co-processor
has dual operating states as shown in Fig. 2.
(1) Tightly coupled co-processor (TCC): In this state,

the multimedia co-processor is a normal ARM-10
co-processor. The instructions of the co-processor
are issued in the instruction stream of the main
processor as extended co-processor instructions, and
they are executed in lock step with pipeline of the
main processor. TCC state implements general
integer and fixed-point SIMD data processing
instructions and all instructions can be executed
conditionally like other ARM instructions.

(2) Parallel Processor (PP) [10]: In this state, the co-
processor is an independent processor and can
operate without control of ARM-10 processor. PP
state has a separate graphics instruction set from
general SIMD instructions of TCC state. The co-
processor executes the independent vertex program
codes while ARM-10 processor performs main
application program or even enters into cache miss
state. Various user-defined vertex processing such
as geometry transformation and lighting calculation
can be performed for current vertex input during
next vertex fetch of ARM-10 processor.

ARM Inst. 0

ARM Inst. 2

SIMD Inst. 1

SIMD Inst. 3

ARM
Program

Vertex
Program

ARM
Program

ARM-10 Multimedia
Co-processor ARM-10 Multimedia

Co-processor

(a) Tightly coupled co-processor (b) Parallel processor
Figure 2: Dual Operations

 Fig. 3 shows the block diagram of control part for dual
operations. Vertex program control unit (VPCTRL)
issues the graphics instructions without control of ARM-
10 processor from 2kB code memory. The general
SIMD instructions are transferred through the co-

processor interface. The control register determines the
operating state. The two operating states – TCC state
and PP state share all hardware blocks except instruction
fetch units. To maintain the communication protocol of
ARM-10 co-processor interface, the multimedia co-
processor drives the co-processor busy signal (CPbusy)
in PP state so that next co-processor instruction from the
main processor stands by for synchronization.

2KB
Code

Memory

INSTR
DEC

&
CTRL

Co-Proc
I/F

VPCTRL

Fe
tc

h

Control
Register

VPen

VPen

CPbusy Graphics
INSTR

SIMD
INSTR

State

INSTR Datapath
Control
Signals

ARM-10

Figure 3: Block Diagram of Control Part

4. Co-processor Pipeline

The eight-stage single-issue pipeline of the co-
processor is illustrated in Fig. 4. The fetch stage transfers
one of the general SIMD instructions and the graphics
instructions from the co-processor interface and the code
memory, respectively to the control unit. For
programmable shading, operands of the SRAM display
buffer and SIMD register files are accessed at the same
time in decode stage. The SRAM address is generated in
the early stage of the pipeline, the issue stage. In
execution stage, there are three separated pipelines –
SIMD ALU pipeline, SIMD multiply pipeline and SFU
pipeline. To reduce the design complexity, register-
forwarding logic between pipeline stages is used only in
VGR.

General SIMD INSTR Fetch Graphics INSTR Fetch

Initial INSTR
Decoding

Display Buf. ADDR
Generation

SIMD Reg. Index
Generation

Final INSTR
Decoding

Display Buf. (SRAM)
Read

SIMD Reg. Access
Forwarding

4-way 32b Integer ALU 4-way 32x16 Integer
MUL CLZ

Start
DIV/SQRT

Continue
DIV/SQRT

CPA

Pipeline Register (E2-E3)

Pipeline Register (E3-E4)

Pipeline Register (E4-W)

4-way 32x16 Integer
MUL

Carry Propa. Adder
(CPA) Array for Low 32b

CPA for High 32b

SHIFT Array

All Register Files Writeback

SIMD ALU Pipeline SIMD MUL Pipeline SFU Pipeline

F

I

D

E1

E2

E3

E4

W
Figure 4: Co-processor Pipeline Structure

 In order to maximally save the power consumption,
the clock gating is performed as instruction-by-
instruction basis as shown in Fig. 5. By the definition of

the ARM-10 co-processor interface, ARM-10 processor
must drive co-processor instruction valid (CPINSTV)
signal to the co-processor only when the current
instruction issued from ARM-10 processor is the valid
co-processor instruction. Using CPINSTV, the clock
signals of SIMD register files can be gated off when the
write operations of the register files are not required.
CPINSTV also reduces power dissipated in the datapath
of SIMD arithmetic units by eliminating the unnecessary
signal transitions.

VGR

VIR

VOR 0

VOR 1

VOR 2

0

ARM-10

C
o-

Pr
oc

I/F R
eg

.CPINSTV

Main Clock

Enable

VPCTRL

Fixed-
point

 Datapath

op
A

op
B

op
C

Latch
D

E
Q

Latch
D

E
Q

Latch
D

E
Q

1

Clock-gating of register files

Operand isolations

Co-processor

Active high @
the co-processor
is called

Clock
Source

PP
TCC

PP

TCC

Figure 5: Instruction-wise Clock Gating

5. Fixed-point Datapath

 Most of 2-D and 3-D multimedia applications require
real number representation to support various algorithms.
In the proposed multimedia co-processor, fixed-point
number representation is used instead of floating-point
number for low power consumption. All datapath
elements are designed to perform fixed-point arithmetic
operations efficiently by using only simple integer
arithmetic circuits.
 Fig. 6 shows the block diagram of the 32-bit fixed-point
multiplier in the SIMD multiply unit. Two stage 32-by-
16 integer multipliers with integer shifters for fixed-point
conversion achieve the single cycle throughput for fixed-
point multiply and accumulate (MAC) operation. In

addition, fast 4-cycle matrix transformation (TRFM) is
implemented in the SIMD multiply unit. By broadcasting
vector elements of input vertex, TRFM can be calculated
by the first MUL and the following three MAC
operations. However, fixed-point MUL and MAC
operations require two cycle integer multiplications and
two cycle integer additions, leading latency to be 4-cycle.
To resolve data dependency between these MUL and
MAC operations, it is allowed that the intermediate value
of the integer multipliers can be bypassed to accumulate
input of the integer adder. By this scheme, the proposed
co-processor shows 50Mvertices/s peak graphics
performance for parallel projection at 200MHz operating
frequency.
 SFU (Fig. 7) calculates the square root and division by
using 32-bit radix-4 combined integer division and
square root unit. It calculates fixed-point result from
fixed-point input number. Integer shifter in SFU pre-
scales the input fixed-point number to intermediate 64-
bit integer format before actual division and square root
operations. Since output fixed-point number is 32-bit
value, only MSB 32-bit of the intermediate 64-bit integer
value is calculated after counting-leading-zero (CLZ)
operation.

Count
Leading

Zero

Integer
Shifter

Radix-4
Integer

DIV
SQRT

Carry
Propa.
Adder

IN

1.0
in Qm.n

For Qm.n Fixed-point Format

Pre-scale
Value

Normalized Input

Quotient

Remainder

Scale up fixed-point dividend to 64b space

OP Pre-scale Value

RCP

RSQ

of Leading Zero

n/2 + # of Leading Zero

OUT

Figure 7: Special Function Unit

 Fig. 8 shows the block diagram of the SIMD ALU in the
fixed-point datapath. It can calculate all of the arithmetic
and logic operations including byte shuffle, data packing
and operand alignment. Since 32-bit fixed-point number

Figure 6: Fixed-point Multiplier

32x16
Booth

Multiplier
(1st stage)

32x16
Booth

Multiplier
(2nd stage)

Unpack
Shifter

32-bit
Carry
Save
Adder

32-bit
Carry
Propa.
Adder

32-bit
Carry
Save
Adder

32-bit
Carry
Propa.
Adder

Pack
Shifter

Accumulate<32>

mulOpA<32>

mulOpB<32>

sumHi
<32>
coHi
<32>

sumLo<32>

coLo<32>

accumLo<32>

E4mulOut<32>

carryOut

carryIn

accumHi<32>

WmulOut<32>

Fixed-point
output

Convert 32-bit fixed-point
to 64-bit integer

Convert 64-bit integer
to 32-bit fixed-point

Bypass of Low 32-bit Bypass of High 32-bit

E1 stage E2 stage E3 stage E4 stage

is represented in a typical 32-bit integer type, integer
adder and shifter circuits are used for calculation of the
fixed-point numbers.
 Although fixed-point arithmetic provides robust
performance in mobile multimedia processing, various
multimedia applications such as physical calculations
still require enhancement of dynamic range in real
number representation. In the co-processor, two special
instructions – controlled ADD/SUB (CAS) and
controlled logical shift (CLS) are added for efficient
software floating-point emulation as shown in Fig. 8.(b).
In order to enhance SIMD parallelism in software
programming of floating-point routines, the CAS and the
CLS instructions change the control flow instructions to
single cycle SIMD arithmetic operations. With floating-
point emulation, the proposed co-processor shows
80Mflops peak floating-point performance at 200MHz
operating frequency.

Shuffle

Align

Pack

A
LU

CLZ

Shifter

Status Reg.
(N,Z,C,V)

opA

opB

opC shAmt

aluOut

aluCode
= {aluType, N}

shCode
= {shType, N}

(a) Block diagram

SUB

N == 0

ADD SUB

Update Negative (N) Flag

Yes
No

CAS

SUB

N == 0

Right shift Left shift

Yes
No

CLS

Previous Arithmetic
Instruction

Update Negative (N) Flag

(b) Two instructions (CAS, CLS) for floating-point emulations
Figure 8: SIMD ALU

6. Conclusion

 The proposed multimedia co-processor is fabricated by
0.18µm 6-metal standard CMOS logic process and
integrated into the ARM-10 based mobile graphics
processor. As described in Table 1, the co-processor
takes 10.2 mm2 and consumes 75.4mW in the continuous
calculations of full 3-D geometry operations. It utilizes
ARM-10 co-processor architecture with dual operations
for advanced 3-D graphics functions and various
multimedia operations, while achieving the low power
consumption by fixed-point datapath and instruction-
wise clock-gating. The peak graphics performance is
50Mvertiecs/s at 200MHz operating frequency. Fig. 9
shows the die photograph and system evaluation board.
The evaluation board equipped with implemented chip
demonstrates realtime 3-D graphics images with various
graphics algorithms.

Process

Power supply

Die size

Operating frequency

0.18 um 6-Metal CMOS

1.8V

Processor
Performance

Graphics
Performance

Power Consumption

200MHz

10.2mm 2

1000MIPS (Integer)

80MFLOPS (Floating-point)
50Mvertices/s
(Geometry transformation)
3.6Mvertices/s (sustaining)
(Full 3-D geometry operations)
75.4mW (With lighting)

60.3mW (Transform only)
Table 1: Co-processor Features

Figure 9: Die Photograph and Evaluation Board

References:

[1] Chi-Weon Yoon, et al, “An 80/20MHz 160mW Multimedia
Processor Integrated With Embedded DRAM, MPEG-4
Accelerator, and 3D Rendering Engine for Mobile
Applications,” ISSCC, pp.142-143, 2001
[2] Ramchan Woo, et al, “A 210mW Graphics LSI
Implementing Full 3D Pipeline with 264Mtexels/s Texturing
for Mobile Multimedia Applications,” ISSCC, pp. 44-45, 2003
[3] Masatoshi Imai, et al, “A 109.5mW 1.2V 600Mtexels/s 3-D
graphics engine,” ISSCC, pp. 332-333, 2004
[4] Masatoshi Kameyama, et al, “3-D LSI core for mobile
phones – Z3D,” Graphics Hardware, pp.60-67, 2003
[5] Tomas Akenine-Moller, et al, “Graphics for the masses: A
hardware rasterization architecture for mobile phones,”
SIGGRAPH, pp.801-808, 2003
[6] Ju-Ho Sohn, et al, “A 50Mverties/s graphics processor with
fixed-point programmable vertex shader for mobile
applications,” ISSCC, pp. 192-193, 2005
[7] Ju-Ho Sohn, et al, “A Programmable Vertex Shader with
Fixed-point SIMD Datapath for Low Power Wireless
Applications,” Graphics Hardware, pp.107-114, 2004
[8] Ramchan Woo, et al, “A Low Power 3D Rendering Engine
with Two Texture Units and 29Mb Embedded DRAM for 3D
Multimedia Terminals,” ESSCIRC, pp.53-56, 2003
[9] Intel Wireless MMX Technology, available:
http://www.intel.com
[10] Prashant P. Gandhi, “SA-1500: A 300MHz RISC CPU
with Attached Media Processor,” HotChips 10, 1998

