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Abstract. Real-time 3D Graphics rendering consumes significant power because of its very high computation
and memory access rate. Due to variation in workload and perceptual tolerance, power-awareness can optimize this
power consumption significantly, thus facilitating migration to future power-constrained devices such as personal
digital assistants (PDAs), tablets, wearables, phones etc. This work proposes such a low power system based on
Approximate Graphics Rendering (AGR). The AGR system supports various algorithms and incremental changes to
the computational mechanism based on certain pre-specified parameters. The knowledge available apriori about the
signal and noise models of graphic images and Human Visual Perception (HVP) are used to select the configuration
that meets the quality needs at the lowest power consumption.

The power savings using the AGR system are examined for two power hungry stages of the 3D graphics rendering
system, namely shading and texture mapping. Besides supporting various algorithms, two novel parameterizable
computation schemes are proposed. First, iterative COordinate Rotation DIgital Computer (CORDIC) algorithm
based units are incorporated for certain computations. Second, a scheme for dynamically enhancing the perceived
image spatial correlation for reduced computations is presented.

A hardware synthesis and estimation methodology based on realistic graphics content from the well-known 3D
graphics benchmarks and the game Quake2 [1] is used for estimation of power savings. Significant power savings
of 75.1%, 73.8% and 72% are demonstrated in the shading, texture mapping function blocks and CORDIC based
3D vector interpolator respectively.
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1. Introduction

3D graphics has been receiving great attention re-
cently due to its use in various applications such as
movie making [1], 3D games [2], virtual reality mod-
eling [3] and 3D Graphical User Interface (GUI) de-
velopment [4]. The rendering stage of the 3D graphics
engine, one of its most power consuming stages, applies
color to each of the pixels of the 3D image generated
on the computer screen. The stage requires hundreds
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of millions of computations and memory accesses per
second for real-time rendering, thus consuming signif-
icant power. The migration of 3D graphics to power-
constrained post-PC systems such as PDAs, tablets,
wearables, phones, etc., requires significant reduction
in its power consumption. This necessitates the devel-
opment of novel techniques which are aware of the ap-
plication characteristics to supplement the power sav-
ings possible using the general low power techniques
described in [5].

Recently, adaptive platforms supporting power- and
energy-aware computations are emerging in multime-
dia and various signal processing applications [6, 7].
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The awareness is characterized by the ability to scale
system resource consumption in accordance with the
operating conditions. Typically, power awareness is
achieved in these systems by providing scope for in-
cremental refinement in quality with resources ex-
pended. Various parameters like filter coefficients, fil-
ter and transform lengths, search spaces, word lengths,
number of iterations, etc., have been utilized for im-
plementing incremental refinement. This can result in
reduced computations and power either by compro-
mising the quality or by expending only the amount
of resources needed to satisfy perceptual tolerance
(e.g., HVP) [8]. The appropriate configuration is de-
termined based on input signal statistics and system
resources.

This work proposes an AGR system that can dynam-
ically choose among a variety of algorithms and param-
eter values that determine incremental changes to the
computations. Two novel features are incorporated to
extend scope for parameterized computations: Dynam-
ically altering the spatial correlation of the image by
varying the word length of image pixels compared for
identifying the correlation; Utilizing CORDIC based
vector interpolator to facilitate adaptive precision con-
trol with parameterized number of iterations.

The content variation exhibited by 3D graphics due
to motion and scene change and the low sensitivity of
visual system to moving objects and after-image phe-
nomenon are leveraged to achieve reduced power in an
AGR system without noticeable quality degradation.
As a graphics image is created artificially, the infor-
mation regarding motion and scene-change are read-
ily available prior to rendering. The human visual per-
ception characteristics are also thoroughly understood.
Hence, power-awareness can be incorporated easily in
a graphics system by leveraging the above characteris-
tics. Note that it is comparatively difficult to obtain ac-
curate signal and noise information in video and other
signal processing applications.

In this work, two main steps of the rendering stage
namely, shading and texture mapping, are implemented
on the AGR system. Power savings is measured us-
ing a hardware synthesis and estimation methodology
with realistic graphics content from the well-known
3D graphics benchmarks and the game Quake2. Power
savings of up to 72, 75.1, and 73.8% are obtained from
the CORDIC normal vector interpolator, and by using
algorithm level adaptations to shading and texture map-
ping respectively. Exploiting image correlation results
in an orthogonal power savings of up to 31% from the

texture mapping interpolation unit, without any bearing
on content-variation and HVP.

The organization of this paper can be detailed as
follows. Section 2 gives the background information
regarding the graphics rendering units of interest and
the mechanisms for power-aware computations. The
theoretical and experimental procedures used for esti-
mating power savings and error associated with the pro-
posed techniques are discussed in Section 3. Section 4
explains the various algorithm level reconfigurations
proposed for shading. The CORDIC algorithm based
parameterized computations for shading are discussed
in Section 5. Adaptive texture mapping using HVP con-
trol with support for dynamic voltage scaling is detailed
in Section 6. The exploitation of texture mapping data
characteristics to achieve parameterized power-quality
trade-offs is studied in Section 7. Conclusions and fu-
ture work are listed in Section 8.

2. Background

This section gives a brief introduction to the two units of
3D graphics rendering system focused on in this work:
shading and texture mapping. Next, the concept behind
the two vital mechanisms for power-awareness in 3D
graphics, AGR and HVP is discussed. Ultimately the
3D CORDIC algorithm which facilitates parameterized
power-quality trade-offs is introduced.

2.1. Shading

Shading belongs to the rasterization stage of 3D graph-
ics. It is the process of performing lighting computa-
tions to determine the intensity or color of each pixel
[9] within a graphics primitive (typically a triangle).
The lighting equation for multiple light sources is:

I = ka Ia +
n∑

i=1

Ili [kd ( �N · �Li ) + ks( �Ri · �V )s] (1)

where i represents the ith light source, ka is the ambient-
reflection coefficient, kd is the diffuse-reflection coef-
ficient, ks is the specular-reflection coefficient, �N is the
unit normal surface vector, �Li is the unit vector directed
toward the ith light source, �Ri is the specular reflection
unit vector of �Li , �V is the unit vector directed towards
the viewer, and s is the specular reflection parameter.
The first term is the ambient light component, the sec-
ond term is the diffuse light component, and the last
term is the specular light component.
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Three types of shading are defined based on the pro-
cedure used for computing the overall intensity at var-
ious pixels within the primitive.

Flat shading, the simplest and least accurate tech-
nique, assumes that each triangle has a uniform color
throughout its surface. It performs the intensity calcula-
tion only once per triangle, thus leading to conspicuous
artifacts in certain situations.

Gouraud shading, a more precise technique com-
putes Eq. (1) at each vertex of a triangle. A Discrete
Difference Analyzer(DDA) algorithm is applied to in-
terpolate the vertex intensities to obtain the values of
the pixels within and on the edges of the triangle. How-
ever, it doesn’t compute the specular term, thus failing
to depict the shininess of the primitive.

Phong shading, the most comprehensive as well as
expensive counterpart, uses the DDA algorithm to com-
pute the normal vector �N at each pixel within the prim-
itive. The intensity of the pixel is then obtained as per
Eq. (1). With the specular term, Phong shading gives
a more realistic image for a shiny object than Gouraud
shading.

2.2. Texture Mapping

Texture mapping is a process in which a 2D or 3D bit-
map image called a texture is applied to an object in the
3D world which is to be mapped to a 2D screen. For
example, a brick can be texture mapped to a wall, wood
can be mapped to a floor and terrain mapping can be
used in flight simulation. Due to the absence of an ex-
act mapping between a texture pixel(texel) and a screen
pixel, an interpolation calculation is often required for
high quality texture mapping. The interpolation can be
performed using a variety of algorithms like point sam-
pling, bilinear interpolation, trilinear interpolation and
anisotropic interpolation. The level of detail of an ob-
ject decreases with an increase in the distance. Hence,
the use of a single bit-map image leads to artifacts. To
realistically depict varying detail, a set of pre-filtered
images of progressively, but discretely decreasing lev-
els of detail called a mip-map is used.

Figure 1 shows how a screen pixel (x, y)d is assigned
a value using various interpolation algorithms in case
of mip-mapped textures. When performing point sam-
pling, the value of T0 is used since it is the texel closest
to the reflection of (x, y) in the nearest mip-map level
l, i.e. (x, y)l . In bilinear interpolation mode, the pixel
value is a weighted average of the texels surrounding
(x, y)l . Numerically it can be represented as shown in

Figure 1. Texels used for various interpolations in case of mip-
mapped textures. ((x, y)d -Required texel, d = Required level (1 <

d < 1 + 1)Ti (i = 0–7) Actual texels.)

Eq. (2), where I(x,y) is the bilinearly interpolated tex-
ture color at pixel position (x, y), Ti and Wi are the
color value, and the weight of a texel respectively, at
the ith neighboring position of (x, y).

I(x,y) =
3∑

i=0

Ti × Wi (2)

When trilinear interpolation is used, the value of (x, y)d

is the weighted average of the intensities corresponding
to each of the 4 texels in the adjacent levels l and l + 1,
respectively, as shown in Eq. (3). Here Wl and Wl+1

are the weights corresponding to levels l and l + 1,
respectively.

I(x,y) = Wl I(x,y)l + Wl+1 I(x,y)l+1 (3)

In this work, a conventional texture mapping scheme
using mip-mapped textures is assumed. Trilinear in-
terpolation is performed when the screen pixel (x, y)
maps to a level d in between two successive mip-map
levels l and l + 1 and bilinear interpolation is applied
when it falls outside the largest or smallest levels of
detail texture. Sections 6 and 7 propose techniques for
obtaining significant power savings from the texture
mapping system.

2.3. Approximate 3D Graphics Rendering

The AGR methodology aims to achieve energy-
awareness by utilizing the Approximate Signal Pro-
cessing(ASP) technique [10, 11] postulated for signal
processing applications. The ASP concept advocates
that the system provide a trade-off between the quality
of processing results and the cost of data processing,
such as energy consumption (E). For a system with
time varying levels of energy, the ASP system facili-
tates incremental refinement in quality with the amount
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Figure 2. E-Q and E-Qp relationships.

of energy expended. Thus the ASP system provides a
constant absolute quality (Qa) directly proportional to
the energy supplied (E).

In case of multimedia systems such as video and
graphics, the human visual system establishes an up-
per bound on the quality perceived, namely perceptual
quality (Qp). Even for a given absolute quality Qa, as
obtained by expending an energy E, the quality Qp
varies along with the content to be perceived by the
human visual system. Thus the E-Qp relationship is
many-to-one in contrast to the one-to-one relationship
existing between E-Qa, as shown in Fig. 2. The AGR
system supports multiple qualities of diverse energy re-
quirements and exploits the E-Qp relationship to utilize
the energy efficiently. The image information readily
available at the high level steps of graphics processing
can be used to determine the configuration that provides
the quality Qp based on the HVP model.

2.4. Human Visual System

Human Visual System is wonderful in that it can iden-
tify small differences in intensities and depths even

Figure 3. Spatio-temporal contrast sensitivity function (STCSF) plot.

from a great distance, and adjust to light differences
across orders of magnitude. However it exhibits some
limitations in that it compresses the received light
signals and evinces non-uniformity in visual detail
that it can perceive across various regions of the eye.
These limitations can be exploited to produce images
without any perceivable artifacts at less computational
expense [12].

The amount of detail that the eye can recognize
is characterized by a term called spatial frequency,
measured in cycles/degree (c/deg). The amount of stim-
ulus’s intensity with respect to its surroundings is de-
fined as contrast. A plot indicating the contrast at var-
ious spatial frequencies and velocities of the objects is
called Spatio-temporal Contrast Sensitivity Function
(STCSF) [13, 14], which can be represented as shown
in Fig. 3. As it can be observed, the visual sensitiv-
ity for an object varies with the spatial frequency and
the velocity in degrees per second (dps). Further the
human visual system retains the image it sees, for a
certain duration, resulting in after-image phenomenon.

HVP has been leveraged extensively in video and
graphics. In the movie industry, the after image phe-
nomenon has been leveraged to maintain a low frame
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rate of 24 frames/second. HVP has also been used for
optimizing 3D Graphics computations such as Level of
Detail (LOD) generation algorithms [15–18]. The LOD
technique based on the distance between the object and
the view point, has been explored to reduce the render-
ing computation, storage and transmission needs. Both
HVP and visual attention concepts are adapted to accel-
erate rendering speed by reducing computations [19]
and memory storage [20]. HVP has also been utilized
to produce realistic graphic images by using special ef-
fect algorithms such as motion blur [21] and depth of
field [22] to mimic the camera system.

In this work, an object’s screen velocity and depth
from a viewer are used as the criteria for adaptive shad-
ing [23] and adaptive texture mapping [24], based on
the STCSF characteristics.

2.5. 3D CORDIC Algorithm

The CORDIC algorithm is an iterative algorithm that
uses only shift-add functions for implementing vari-
ous signal processing functions like sine, cosine, vec-
tor rotation, coordinate transformation, and even linear
functions. The basic theory of the CORDIC algorithm
can be explained with two-dimensional vector rotation
example. Equation (5) shows the equations for the gen-
eral vector rotation CORDIC algorithm. x and y are the
cartesian components, z is used for the angle accumu-
lation, Ki is the scale constant for ith iteration, and σi is
the sign of accumulated angle for ith iteration. To rotate
a vector V(x, y) by angle z, x0, y0 and z0 are initialized
with x , y and z, respectively. After nth iteration, if zn

converges to 0, then xn and yn are taken as the compo-
nents of the rotated vector. The rotation angle for each
iteration is pre-computed as tan−1(2−i ) and stored in a
small Read Only Memory (ROM).

xi+1 = Ki (xi − σi yi 2
−i )

yi+1 = Ki (yi + σi xi 2
−i )

zi+1 = zi − σi tan−1(2−i ) (4)

Ki = 1√
1 + 2−2i

σi = ±1.

3D vector rotation can be achieved by either cascad-
ing 2D CORDIC blocks [25], or introducing redundant
variables to the CORDIC algorithm [26] to overcome
the speed problem. Equation (5) introduced in [26] is
analogous to 2D CORDIC equation except that three

additional variables (u, v, w) are used and z is a coor-
dinate component, rather than an angle value.

ui+1 = K 2
i (ui − xi pi 2

−i + vi ti 2
−i + yi ti pi 2

−2i )

vi+1 = K 2
i (vi − yi pi 2

−i + ui ti 2
−i − xi ti pi 2

−2i )

wi+1 = Ki (wi + zi pi 2
−i )

xi+1 = K 2
i (xi + ui pi 2

−i − yi ti 2
−i − vi ti pi 2

−2i )

yi+1 = K 2
i (yi + vi pi 2

−i + xi ti 2
−i + ui ti pi 2

−2i )

zi+1 = Ki (zi − wi pi 2
−i ).

(5)

Thus the CORDIC algorithm is well suited for re-
configurable hardware because of its shift and add op-
erations, and due to its ability to faciltate a fine-grain
precision control by providing precision proportional
to the number of iterations computed.

3. Methodology

This section discusses the methodology followed to
characterize power savings and other demerits such as
the introduced error, to arrive at realistic control crite-
rion that provides maximum power savings yet with a
graceful quality degradation.

3.1. Power Estimation

The power estimation methodology uses analytical as
well as experimental approaches. Analytical methods
are used to arrive at realistic first-order estimates for
power savings at a faster rate. For example analytical
estimates are used to obtain the power ratio between
Phong and Gouraud shading as a function of various
primitive dimensions.

3.1.1. Power Ratio Between Gouraud and Phong
Shading. In this section, a simple model is introduced
to show power savings possible due to adaptive shad-
ing. In order to simplify the model and to minimize
the computation difference between the two shading
algorithms, the following assumptions are made:

(a) All functional units have the same word length.
(b) Only one light source is present.
(c) Specular reflection parameter s = 1.
(d) For the specular term, �N · �H [27] is used instead of

�R · �V . Since halfway vector �H between �L and �V
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Figure 4. Basic data flow of Gouraud and Phong shaders.

is same for all pixels of an object, while �R varies
for each pixel.

(e) The functional units adder, multiplier, and divider
have normalized power consumptions of 1, 1.5 and
4, respectively [28] (pp. 2–6).

Figure 4 shows the basic data flow block diagram of
the Gouraud and Phong shader.

Simplified power model for Gouraud and Phong
shading based on the above assumptions can be ex-
pressed by Eqs. (6) and (7), respectively.

Pgouraud = Pdda + Pdiff × 3 (6)

Pphong = Pdda × 3 + (Pdiff + Pspec) × p (7)

where Pdda, Pdiff and Pspec are the power consumed by
the DDA algorithm, diffusion term and specular term,
respectively. p is the number of pixels in a triangle.

The first term Pdda of Eq. (6) is the power consumed
to compute the inner pixels of a triangle given the pixel
values of its three vertices. Although Pdda of a triangle
varies due to the position and shape, the variation could
be ignored by assuming that all triangles are equilateral.
Therefore, the Pdda is:

Pdda = (x + 1)(Pdiv + Psub) + [p − (3x − 3)]Padd

= 5(x + 1) + (p − 3x + 3) = p + 2x + 8 (8)

where x and p are the number of pixels of a side of a
triangle and the number of pixels within a triangle, re-
spectively. The relationship between x and p can be
expressed by 0.43x2 + 0.13x − 0.56 = p. This x
and p relationship equation is derived from the sim-
ple equilateral triangle trigonometry. We also assume

Figure 5. Power consumption ratio of Phong shading and Gouraud
shading: one triangle shading.

that Psub = Padd. Unlike the Pdda of Pgouraud, Pdda term
of Eq. (7) is the power consumed to interpolate the nor-
mal vector �N . Since �N has three components (x, y, z),
Pdda is multiplied by 3.

From Eq. (1), it can be seen that the diffusion term
needs one vector dot product and one multiplication
with the diffusion coefficient, and one more addition is
needed to add it to the ambient term for obtaining the
overall intensity. Hence Pdiff = 3 × Pmul + 2 × Padd +
1 × Pmul + Padd = 4 × Pmul + 3 × Padd = 9. With the
assumptions c. and d., Pspec is equal to Pdiff − 1 = 8.
By substituting these numbers into Eqs. (6) and (7), the
ratio of Pphong to Pgouraud can be expressed as in Eq. (9).
Figure 5 shows the overall power consumption ratio for
different power consumption ratios of the adder and the
multiplier.

Pphong

Pgouraud
= 3(p + 2x + 8) + (9 + 8)p

(p + 2x + 8) + (9 × 3)

= 20p + 6x + 24

p + 2x + 35
(9)

where p ≥ 3.

3.1.2. Experimental Power Estimation Methodology.
The analytical estimates are approximate, and cannot
properly model certain situations like the suitability of
the architecture to the implementation mechanism and
the impact of input data-patterns on power consump-
tion. An experimental estimation methodology can ef-
fectively address these concerns.

Figure 6 shows the experimental methodology
adopted for the research. The first step involves the cre-
ation of an application using OpenGL programming
and production of an animation such as a teapot or
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Figure 6. Experimental methodology for power savings estimation
using HVP based adaptive computations.

fighter using Pixcon software or playing of a 3D game
such as Quake2 [1]. Open Graphics Library (OpenGL)
functions as the interface between the program and
computer hardware. The application test data is traced
by modifying the OpenGL library to monitor the inputs
to both shading and the texture mapping units. while,
OpenGL programming can be used to simulate both
Gouraud shading and texture mapping, Phong shad-
ing is not supported. Hence Pixcon software is used
to perform Phong shading. Quake2 uses texture map-
ping excessively, and hence provides a more realistic
benchmark for texture mapping.

Simultaneously, a hardware model of the functions
of interest is implemented at the Register Transfer
Logic (RTL) level using Verilog Hardware Descrip-
tion Language(HDL). The power consumption of the
hardware model is simulated using Taiwan Semicon-

Figure 7. Simulation model: (a) Fighter with 3843 triangles and 2014 vertices (b) Teapot with 2257 triangles and 1180 vertices.

ductor Manufacturing Company (TSMC) 0.25 µm Ap-
plication Specific Integrated Circuits (ASIC) library
and Synopsys Power Compiler based methodology or
a Field Programmable Gate Array (FPGA) based cell
library using the Altera QuartusII tool. The test appli-
cation data obtained above is used to excite the hard-
ware modules and obtain realistic power values. The
methodology is also used to derive HVP based con-
trol criterion. The characteristics such as the speed and
distance of an object from the viewer are specified in
the application program. The 3D graphics still image
rendered by OpenGL is observed to determine if high
or low quality is needed.

3.2. Image Quality Measurement

In general, 3D graphics image quality is measured by
human observation. For example, the level decision cri-
teria of the LOD algorithm is pre-decided by trial and
error even though a method based on the human visual
system is introduced. In order to develop criteria for
shading selection, the term picture signal to noise ra-
tio(PSNR) used for video image comparison (Eq. (10))
has been utilized. PSNR cannot be used alone to decide
the relative quality of a given graphic image, since dif-
ferent images with the same PSNR may not have the
same quality. Because of this reason, human observa-
tion is used in addition to PSNR to judge the relative
difference in image qualities.

PSNR = 10 log
2552m2

∑m
n=1(Rn − Cn)2

(10)

where m, R, and C are the number of pixels in an
image frame, the reference image, and the compared
image, respectively. Figure 7 shows stills from the two
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objects used for the simulation. Although just
monochrome stills, the shading artifacts can be easily
discerned.

4. Algorithmic Reconfiguration in Shading

This section explains the various techniques proposed
for adaptive shading. The adaptive shading uses an
appropriate shading algorithm from a set of alterna-
tives. The limits of a human visual system like the
after image phenomenon, its relative insensitivity to
objects at a distance and in motion, are leveraged
to select a low quality shading algorithm. The infor-
mation regarding scene change occurrence, the dis-
tance between camera and object and speed of a mov-
ing object are required for adaptive shader control.
As this information is available only at the applica-
tion stage of graphics processing, help from this stage
is required for successful deployment of these tech-
niques. Note that this information is readily available
in 3D graphics while it must be derived for video
sequences. The various adaptive shading techniques
are.

A. Distributed Computation Over Frames

In a layered image rendering system [29], scene change
is one of the cases pushing hard on the system, since
each object of all the layers should be rendered in one

Figure 8. Phong Shader with accumulation buffer.

frame time. Thus a scene change often determines the
rendering system clock. The after image phenomenon
of the human visual system can be used to ease the sys-
tem clock by rendering new objects over several frame
times. The clearly noticeable artifacts that may result
due to progressive rendering can be mitigated by using
an accumulation buffer. From Eq. (1), overall inten-
sity requires computation of the diffusion and specular
terms over all the light sources. If there are four light
sources, the system clock should be fast enough to it-
erate the diffusion and specular term four times in a
frame time. As shown in Fig. 8, by adding an accumu-
lation buffer and executing diffusion and specular term
iterations over four frame times, the system clock can
be lowered to 1/4 of the initial value. This potentially
allows the lowering of system clock speed.

If the normal vector for each pixel is cached in a
local memory, it need not be re-computed for each
light source. For a 640 × 480 image frame size ren-
dering system with a 16 bit normal vector and sup-
port for hidden surface removal algorithm, the hard-
ware cost is 1.85 MB memory and 922 KB for normal
vector caching and accumulation buffer respectively.
The power savings obtained from this approach could
be up to 75% − Pmem, where Pmem is the power con-
sumed for access and maintenance of the memory. The
power reduction varies according to the contents of the
images. Since the coverage of artifacts resulting from
progressive rendering over frames could be proved only
by displaying the image sequence, the results are not
shown in this paper.
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B. Adaptive Shading on a Moving Object

An object can be shaded using either Gouraud or Phong
shading algorithms, the dataflow of which is shown in
Fig. 4. If the speed and distance of the object from the
camera are above a particular threshold, the low com-
plex Gouraud shading can be used without perceivable
quality degradation. In order to determine the thresh-
old values, the PSNR value over a range of speeds and
distances is noted. The PSNR graphs for the models of
the focus, Teapot and Fighter, are depicted in Figs. 7
and 9.

A decision rule graph which indicates the algorithm
to be used at a given speed and distance is then gen-
erated based on the chosen PSNR. Though, a chosen
PSNR may lead to a contour shaped decision line, it
can be approximated by a straight line to simplify the
controller. Since the 3D models may differ in a va-
riety of attributes like light reflection, surface com-
plexity, color, etc., a unique decision rule might be re-

Figure 9. PSNR of adaptive shading on moving objects: (a) Fighter and (b) Teapot.

Figure 10. Blurred Fighter image (21 pixels/frame): (a) Phong shading and (b) Gouraud shading.

quired for each 3D model or a set of closely behaved
models.

The difference between Phong and Gouraud shaded
images can be noticed clearly in the boxed area of
Fig. 10, even though motion blurring is applied, since
the images are being observed in still mode. However,
when the image sequence generated by adaptive shad-
ing is played in real time, it is hard to notice the dif-
ference with an appropriate decision rule. The decision
line in Fig. 10 can be altered to modify the amount of
time low quality shading is used, thus controlling the
power savings.

Table 1 shows the power savings possible by ren-
dering the Fighter and the Teapot 3D models in fast
motion. The Teapot model saves more power than the
Fighter model since it has a greater number of pixels per
triangle. The savings estimates are measured with s =
1. At the s values of 20 and 40 which are realistic for the
Fighter and the Teapot models, respectively, the power
savings could be higher than that shown in Table 1.
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Table 1. Average power saving for 5 different distances.

Distance Avg. Pixel/Tri Fighter Teapot Avg. Pixel/Tri

1 23.5 7.35 10.36 51.8

2 18.8 6.56 8.52 32.1

3 15.8 5.99 7.10 21.9

4 11.2 4.94 5.06 11.7

5 6.7 3.66 3.23 5.4

Avg. 5.7 6.85

Power saving % 82.5% 85.4%

C. Adaptive Specular Term Computation

Evaluation of the specular term of Eq. (1) involves an
expensive exponential computation. The exponential
computation can be implemented using a variety of
methods [30], however, we consider the general imple-
mentation of exponential computation as the reference
for which the computational cost grows at least loga-
rithmical in s [31].

An alternative approach exists for computing the
specular term called Fast Phong shading [32], which

Figure 11. Blurred Teapot image (21 pixels/frame): (a) Phong shading and (b) Fast Phong shading.

Figure 12. PSNR of adaptive specular term computation: (a) Fighter and (b) Teapot.

is given by Eq. (11). Since this equation requires one
multiplication, one subtraction, one addition, and one
division, it is not power efficient for all values of the
specular reflection parameter s. For small values of s,
using just the iterative multiplication consumes less
power.

Specular term = ks
ns

( �N · �H ) − ( �N · �H )ns + ns
.

(11)

If the reference exponential computation block re-
quires 8 multiplications when s = 256, the power con-
sumption is 8×1.5 = 12, while the power consumption
of the fast phong equation is 1 + 1 + 1.5 + 4 = 7.5,
leading to a 37.5% power saving. Figure 11 shows the
difference between Phong and Fast Phong with s = 64
which yields 16.7% power saving.

The adaptive specular term computation uses the
same criteria and one more input parameter s for de-
cision rule making. Figure 12 shows the PSNR graph
used to make the decision line. Unlike the graph from
the adaptive shading, the Fast Phong shading can be
used for all objects in motion regardless of the speed
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and depth, since the PSNRs are much higher than those
of the adaptive shading.

5. CORDIC Based Vector Interpolator

In a power-aware 3D graphics system [23], it is pre-
ferred to have a flexible hardware block that provides
precision control. Three dimensional vector interpola-
tion required by Phong shading [33], is one functional
block where multiple precision capability could help
in a power-aware system design.

5.1. 3D Vector Interpolator

The vector interpolation involves interpolating the sur-
face normal vectors of primitive vertices to obtain sur-
face normal vectors of pixels lying on the edges and
within the primitive. Figure 13 shows the four interme-
diate vectors obtained by interpolating the vectors V1

and V2.
The vector interpolation can be performed using a

variety of algorithms such as spherical interpolation,
linear interpolation, CORDIC based vector interpola-
tion, etc. The spherical interpolation though sophis-
ticated, involves complex computations such as sine,
division and multiplication. The linear interpolation
is less involved computationally, yet demands com-
plex post normalization which requires one square-
root, three divisions, three multiplications and two ad-
ditions. The CORDIC based interpolator is more flex-
ible and efficient, and uses CORDIC algorithm in the
rotation mode for performing vector interpolation.

Figure 13. Vector interpolation.

5.2. 3D CORDIC Vector Interpolation

The proposed 3D CORDIC interpolator is based on 3D
redundant CORDIC algorithm introduced in Section 2.
It operates on polar components instead of cartesian
components because of its hardware implementation
benefits [34]. If polar coordinated data is not supported
by the system, the CORDIC architecture itself can per-
form the conversion, without any additional hardware.
The CORDIC vector interpolator consists of two steps.
The first step interpolates the polar components of
the two given vectors linearly according to the posi-
tion of the intermediate point. As shown in Fig. 13, θ

and φ are the differences between polar components
of the two vectors. This step is the same as that in the
cartesian component interpolation method, except that
the computations are now performed on two parameters
(θ , φ), rather than three (x , y, z). Instead of vector nor-
malization, the CORDIC vector rotation is performed
to produce the normalized vector in the second step.
This output of the CORDIC vector rotation is ready to
be used in the next step of the Phong shader.

Due to the inherent characteristic of linear interpola-
tion, the CORDIC vector interpolator produces an in-
terpolation path which is different from the analytically
estimated path. The gap between the two paths tends
to become greater for larger γ . However, as shown in
Fig. 14, over 90% of γ is less than 30 degrees (0.52 ra-
dians) which is small enough for the path difference to
be ignored. The quality of interpolation is proportional
to the bit precision (Ni − 1) or the number of itera-
tions (Ni ), because convergence error becomes more
prominent at smaller numbers of iterations. It can be
seen from Fig. 15 that 10 iteration CORDIC (9-bit

Figure 14. Statistics of angles between two vectors: Teapot.
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Figure 15. Teapot with different number of CORDIC iterations:
(a) spherical interpolation, (b) 10 iteration CORDIC, (c) 8 iteration
CORDIC and (d) 6 iteration CORDIC.

data + 1-bit sign) can produce almost similar interpo-
lation results as that of other sophisticated algorithms,
and can meet the normal perceptual quality require-
ments for the teapot image.

5.3. HVP Based Adaptive Control

The error introduced due to CORDIC based vector
interpolation is readily apparent at reduced number of
iterations as shown in Fig. 15. However, if the depth
or speed of the object increases, the artifacts may not
be easily noticeable due to HVP limits. In this work,
the impact of increased object speed on the number of
iterations required for producing an image with out any
perceivable quality degradation is investigated. The
image of fast moving objects is simulated by applying
motion blurring on the respective objects at steady
state. It can be seen from Fig. 16 that, six iterations for
a 30-pixel and eight iterations for a 10-pixel motion
blurred teapot can be used without any noticeable
degradation. The optimum number of iterations
required at various speeds, thus obtained, can be stored
as a control map for future adaptive control. The map
can be created for each object separately or for a group
of objects having similar surface complexity. The
same control map based approach can be extended to
account for other HVP parameters such as the number
of frames per second, the size of the image and the
viewer distance from the display device.

Figure 16. Motion blurred image: (a) 10 pixel motion blurred teapot
(spherical interpolation), (b) 10 pixel motion blurred teapot (8 itera-
tion CORDIC), (c) 30 pixel motion blurred teapot (spherical interpo-
lation) and (d) 30 pixel motion blurred teapot (6 iteration CORDIC).

5.4. CORDIC Architecture for Vector Interpolation

The proposed CORDIC architecture is based on Eq. (5)
and uses redundant arithmetic CORDIC instead of
cascaded 2D CORDIC functional blocks. It uses
more computations but provides easy precision con-
trol. The function block for the first step of the
CORDIC vector interpolator is the same as that of
the cartesian component interpolator. The inputs of
the second step (u, v, w, x, y, z) assumes the values
(0, 0, 0.673, ± 0.3696, 0, 0), respectively. The initial
value of x is selected according to the target angle θ .
The pre-scaled initial values of x and w are chosen
to remove the post-scaling computation of the rotated
vector.

The 10 iteration mode requires 80 shift operations
and 140 additions if an optimized 4-input adder block
is employed. The number of iterations can be reduced
further by storing a pre-computed dataset in memory
of the first few iterations and using it as required. As
shown in Table 2, 122.9 Kbits are required to save all
possible data values for the first five iterations. This
storage requirement can be satisfied by recent FPGA
devices such as the Altera EP20K series device.

If a pre-computed data set for 5 iterations is used,
the total number of computations for 10 iterations is re-
duced to 60 additions and 30 shift operations. Similarly,
for the 6 iteration CORDIC mode, only 12 additions
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Table 2. Computation savings for different memory size usage
(A: add, S: shift).

No. iterations No. data (n) Required memory Reduced
to save to store (n · 6 · 10 bit) computations

2 25 1.9 Kb 32A, 20S

3 27 7.7 Kb 48A, 30S

4 29 30.7 Kb 64A, 40S

5 211 122.9 Kb 80A, 50S

and 6 shift operations are needed. Thus CORDIC based
scheme is very efficient compared to the conventional
vector normalization requiring three multiplications,
three divisions, one square-root and two additions for
each vector. More details about the architecture can be
found in [35].

5.5. Results

Table 3 shows the energy consumption and energy sav-
ing ratios for different number of iterations. The en-
ergy consumption values are computed based on the
power results obtained using Synopsys Power Compiler
with TSMC 0.25µ library. Note that the power savings
doesn’t include the extra power involved in accessing
the pre-computed dataset from the internal memory. It
can be seen that the energy savings from dynamic op-
eration can be up to 72% when all objects in a scene
are rendered in 6 iteration CORDIC mode.

To compare the energy consumption with the con-
ventional vector normalization, a 10-bit divider is im-
plemented and is found to consume 0.7 ·10−6 (J). Since
vector normalization performs 3 divisions, 2.1 · 10−6

(J) is required only for the division operations. This
demonstrates that energy consumption of the presented
CORDIC vector interpolator could be competitive in
the 10 iteration mode, and better in lower iteration mode
as compared to the conventional hardware.

Table 3. Power consumption ratio for different number of
iterations.

No. iterations Energy consumption (J) Energy savings

10 2.24 · 10−6 –

8 1.21 · 10−6 46%

6 0.5 · 10−6 78%

6. Adaptive Texture Mapping

The texture mapping step of the 3D Graphics render-
ing pipeline involves a significant amount of computa-
tions and memory accesses for performing interpola-
tion. The demand for these operations is aggravated by
the increasing need for high quality real-time texture
mapping and associated increase in texture resolutions.
Various techniques have been proposed to improve tex-
ture mapping performance.

Previous Work

Texture mapping using compressed textures has been
proposed by Beers et al. [36], to alleviate the texture
transmission and storage requirements. However some
artifacts are introduced and the amount of interpolation
computations remain unaltered. Kugler [37] proposed
space-variant filter in the texturing unit to minimize the
artifacts. Hakura [38] and Cox et al. [39] demonstrated
the use of a single- and multi-level texture caching for
improving bandwidth and latency of the texture mem-
ory system. The intra and inter frame texture locality
were exploited to achieve these improvements. Igehy et
al. [40] used a prefetching cache scheme to overcome
the texture memory latency.

A few techniques have been proposed for adaptive
texture mapping. Rosman et al. [41] presented a scheme
for dynamically lowering the quality of interpolation
based on the fractional level of depth value. HVP based
adaptive texture mapping has been developed by Du-
mont et al. [20]. They leveraged visual importance of
the textures to enhance the efficiency of the texture
memory system. Their primary goal to provide high
frame rates is different from our objective.

In this work the fact that human visual system is less
sensitive to certain complex contents and moving ob-
jects is leveraged to dynamically perform lower quality
interpolation. HVP based control criterion is proposed
for directing the interpolation algorithm selection
process.

6.1. HVP Based Algorithm Selection

For adaptive control, object velocity and texture spa-
tial frequency are used as the input parameters. Ac-
cording to the value of these two parameters, the adap-
tive controller decides which interpolation will be used
for the incoming data. Figure 17(a) shows the contrast
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Figure 17. (a) Spatio-temporal contrast sensitivity function (CSF) plot and (b) Shaded area: sensitivity less than 50.

Figure 18. (a) Bilinear interpolated cube (left) and Trilinear interpolated cube (right) and (b) Motion blurred by 10 pixels.

sensitivity function graph [13] which is the base of de-
cision rule and an example is depicted in Fig. 17(b).

In Fig. 17(b), if the velocity and the texture spa-
tial frequency of an object fall in shaded area, mode
controller sets the texture mapping system to bilin-
ear interpolation. Decision making in the mode con-
troller can be implemented with a memory map that
has the decision rule graph. Figure 18(a) shows the
quality difference between bilinear and trilinear inter-
polations. Although there are some noticeable aliasing
artifacts in Fig. 18(a), it is hard to distinguish the differ-
ence in Fig. 18(b). Thus bilinear interpolation requir-
ing less computations can be used instead of trilinear
interpolation.

In general, trilinear interpolation function block
consists of two bilinear interpolation blocks operat-
ing in parallel at the supply voltage and clock val-
ues of Vdd,full and Clkfull to obtain a given through-
put of k pixels/second. At the same throughput, one
of the two bilinear interpolation function blocks will
be idle in the bilinear mode. A technique called Dy-

namic Voltage Scaling (DVS) can be used to obtain
quadratic power efficiency by operating the two bilin-
ear units concurrently in the bilinear mode at reduced
parameters Vdd,half and Clkhalf required to provide an
individual throughput of k/2.

6.2. Results

Experimental results are obtained using the RTL level
implementation and power analysis methodology ex-
plained in Section 3. Since TSMC 0.25 µm library
supports only 2.5 V Vdd, the Tp vs. Vdd relationship
is used to derive the Vdd,half. Vdd,half is estimated to be
1.6 V leading to a power reduction ratio of (1.6/2.5)2,
0.41. Thus, the architecture uses two modes; 2.5 V Vdd

at 100 MHz clock for trilinear mode and 1.6 V Vdd

at 50 MHz clock for bilinear mode. It is assumed that
these voltages and clocks are supplied by the system
level source simultaneously and a couple of multiplex-
ers are used to select appropriate voltage and clock
values without any significant delay.
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Table 4. Power saving from adaptive interpolation: Quake2 10
frames.

Number of Number of Power Power
Converted Bi-linear Tri-linear consumption savings
ratio (%) computation computation (mW) (%)

0 3619749 3808894 454.68 0

0, DVS only 3619749 3808894 371.19 18.36

5 3810193 3618450 358.59 21.13

15 4191083 3237560 333.37 26.68

25 4571972 2856671 308.16 32.22

100 7428643 0 119.06 73.81

Table 4 shows power consumption of the adaptive
texture mapping system for various interpolation con-
version ratios. Interpolation conversion means that bi-
linear interpolation is performed for a certain pixel
which is supposed to be interpolated in the trilinear
mode. Since we do not have the source code of Quake2,
the various conversion ratios are manually selected. As
shown in Table 4, bilinear operation with DVS and
without the HVP model leads to a 18.4% power sav-
ing and up to 73.8% savings are possible by setting the
adaptive texture mapping system completely in bilinear
mode using DVS (no trilinear interpolation).

7. Parameterized Texture Mapping

Section 6 discussed algorithm level techniques for low
power texture mapping. More power savings can be
achieved from these techniques by exploiting the tex-
ture mapping data and interpolation characteristics.
These characteristics can be monitored using the two
parameters, texel weight and its intensity. Significant
amount of Multiply-Accumulate (MAC) operations
form the core of interpolation as given in Eqs. (2) and
(3). The number of MAC computations can be reduced
by leveraging each of these parameters by:

(1) Elimination of MAC operations based on a weight
threshold (weight based technique): The weights
Wi , where i ∈ {0, 1, 2, 3} as used in Eq. (2) are
calculated using the formulae:

W0 = (1.0 − x f ) × (1.0 − y f )

W1 = x f × (1.0 − y f )
(12)

W2 = (1.0 − x f ) × y f

W3 = x f × y f.

Here x f = FRAC(x) and y f = FRAC(y) respec-
tively. Hence, as seen above, when (x, y) is closest
to a particular position i(i ∈ {0, 1, 2, 3}), Wi is
the largest and W3−i is the smallest. If x f and y f
assume random values between 0.0 and 1.0, then,
Mi , the probability that Wi ≤ k, k ∈ {0.0..1.0},
is equal for all i , and increases with k. It has been
observed emperically that, at least 15−20% of the
MAC operations involve weights below a threshold
k of 0.05, and if it is assumed that the texel intensi-
ties are comparable, these MACs can be eliminated
while introducing a very minor error, thus saving
power.

(2) MAC to add transformation based on spatial cor-
relation in texel intensities (intensity based tech-
nique): The intensity values used in calculating
I(x,y) in Eq. (2) are those of the neighboring texel
values. If the textures exhibit significant amount of
spatial correlation, the neighboring texels will be
equal with a high probability. If any two texels, Ti

and Tj are equal, a MAC operation can be trans-
formed to an addition with out any degradation in
precision using Eq. (13).

Ti × Wi + Tj × W j = Ti × (Wi + W j ). (13)

There can exist at most three pairs of equal intensi-
ties among the four intensities. When the number
of such equal pairs is 1, 2 and 3, the number of
MAC operations converted to additions is 1, 2 and
4, respectively. Extra logic needed for identifying
the equality of texel intensities Ti , i ∈ {0 . . . 3},
is found to be less than that of a multiplier. Thus
this technique leads to reduced computations and
thus power when the number of equal pairs is ≥1.
The number of bits of the intensity value, N, used
for equality determination can be parameterized to
facilitate variable degrees of precision and power
savings.

7.1. Experimental Results

In order to obtain reasonably accurate estimates for
power savings, experiments are performed on a trace
obtained by running the first ten frames of the Quake2.
Figure 19 depicts the percentage of less expensive
MAC operations for a given weight threshold k. Fig-
ure 20 demonstrates the absolute error statistics for a set
of weight threshold(k) values. Each ordinate value in
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Figure 19. MAC operations saved in weight based technique.

Figure 20. Absolute error statistics in weight based technique.

Fig. 20 represents the percentage of the texture mapped
pixels with absolute error less than the corresponding
abscissa value (out of a maximum pixel value of 255).
It can be seen that up to 47% of the MACs can be eilmi-
nated at k = 0.2. However, to keep the absolute error
within acceptable bounds, a value for k between 0.05
and 0.1 is preferable, resulting in a meager 19 to 31%
reduction of MAC operations.

Figure 21 presents the percentage of MAC oper-
ations transformed into additions using the intensity
based approach for a given number of MSB (most
significant bit) positions N , (N ∈ {4 . . . 8}) used for

Figure 21. MAC operations transformed in intensity based
technique.

equality detection. About 44% of the MACs can be
transformed to additions without any error. The very
low absolute error makes even the 4-bit (N = 4) mode
of operation feasible. Hence, up to 67% of the MACs
can be transformed to additions, resulting in significant
power savings. It can be seen from Figs. 19–22 that the
intensity based approach is very superior compared to
the weight based approach, both from the point of view
of power savings and precision.

Figure 22. Absolute error statistics in intensity based technique.
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8. Conclusions and Future Work

8.1. Conclusions

In this work, a novel power-aware graphics rendering
system performing the 3D graphics shading and texture
mapping is presented. The proposed system is based on
the concept of AGR, according to which the amount of
quality increases continuously with an increase in ex-
pended power. The image information along with the
HVP characteristics are used to select the minimum
perceptual quality required, thus leading to power sav-
ings. A methodology to estimate the power reduction
and error involved in using approximate techniques is
also presented.

Algorithm level power savings are demonstrated for
both shading and texture mapping units. A CORDIC
based 3D vector interpolator is presented to support
dynamic control of computing precision ranging from
5–9 bits. A technique to exploit the spatial correlation
of the texture maps used in texture mapping is also
presented for enhanced savings.

8.2. Future Work

The HVP concepts are to be extended to facilitate
power-awareness in other parts of the 3D Graphics
system. The power savings possible using other re-
configurable techniques such as hardwired multiplier,
distributed computations, etc., should be evaluated. In-
stead of optimizing graphics processing on the gen-
eral purpose reconfigurable systems, the scope for de-
veloping graphic domain-specific reconfigurable units
should be investigated.
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